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Results of experimental and theoretical investigations of centrifugal instability in the turbulent boundary layer 

on a concave surface are presented. Linear and nonlinear regularities in the development of this type of 

instability are revealed. 

Concave surfaces are rather widespread in power engineering equipment, aerospace technology, etc. As a 

result of the active effect of centrifugal forces, longitudinal Taylor-G/Artier macrovortices with an alternating 

direction of rotation are created in the vicinity of these surfaces. Up to now, mainly laminar Taylor-GiArtler vortices 

have been studied. However, as has been shown by Tani's experiments [1 ], ordered macrostructures of this type 

also exist in turbulent flow. In recent years, more and more attention has been paid to this type of flow, since 

longitudinal macrovortices affect not only heat and momentum transfer processes but also resistance to vibration 

and hysteresis phenomena with variation of the Reynolds number, which are characteristic of exit diffusors of 

turbomachines [2 ]. 

Taylor-G~rt ler  vortices have been investigated experimentally in [3, 4] and theoretically in a linear 

formulation in [5-8 ]. 
The present work is devoted to both experimental and theoretical investigations (in a linear formulation) 

of longitudinal macrovortices in a turbulent boundary layer. 

Experiments were carried out on an open-type gas-dynamic contour. In order to eliminate perturbations 
at the entrance of the experimental section, which could affect the formation of Taylor-G~rt ler  vortices, the fan 

for moving the working medium (air) operated in the pulling mode, i.e., was installed behind the experimental 
section. The experimental section consisted of two concentric surfaces (the working concave surface had radius 

R w = 120 cm and a length of 70 cm) with a 10-cm gap between them. The transverse width of the working sunace 

was 20 cm. A shutter was installed behind the working section to control the flow rate. Preswitched sections were 

installed forward of the experimental section to obtain various thicknesses of the boundary layer. 

Experimental investigations were carried out using two methods: a method based on surface visualization 

and measurements with a constant-temperature thermoanemometer. The error of thermoanemometric measure- 

ments was 4.4%. Surface visualization was carried out using a naphthalene-saturated alcohol solution, which was 

sprayed on the concave surface. In the presence of vortices the film is carried away faster and, as time elapses, 

sharp longitudinal bands appear. 

The experiments started with visual inspection of longitudinal macrovortices. It should be noted that the 

flow parameters (velocity at the external surface of the boundary layer u~ and thickness ~) were varied, taking 

into account the flow temperature, such that the G~rtler number Go = u~c3/vK 0"5 was in the region of linear 

instability, i.e., G5 > Gocr, where Gocr is the critical G~rtler number calculated from linear stability theory [8 ]. 

Experiments have shown that, starting with a certain distance from the entrance to the working section, pronounced 

longitudinal bands appear, which can be interpreted as the presence of longitudinal Taylor-G~rt ler  vortices. These 
bands diverge and broaden, which indicates an increase in the vortex wavelength 03 downstream. 
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Fig. 2. Velocity profiles in the boundary layer  (z = vat): l) theoretical profile, 

2) descending flow, 3) ascending flow. 

However, as was shown by the thermoanemometric  measurements ,  the vortex wavelength increases,  

so that the dimensionless quantity 2 / 6  remains virtually constant. Therefore ,  the dimensionless vortex wavenumber  

-- a6, where a = Z,r/2 is also a constant. 

We have observed another  interesting fact. A cardboard strip glued to the working surface leads to local 

separation of the boundary  layer. As has been shown by both visualization and thermometric measurements ,  the 

vortices collapse in this case. At a certain distance, after  boundary- layer  reat tachment,  vortices appeared again. 

This type of flow development agrees with the data of [2 ], in which longitudinal vortices were genera ted  by special 

insets in a curvilinear diffusor and collapsed during flow escape. 

The  results of thermoanemometr ic  measurements for one transverse cross-section (x = const, where x is 

the curvilinear coordinate along the surface) are shown in Fig. 1. It is evident that the velocity in the plane y = 

const (y is the coordinate along the normal to the surface) varies periodically (quasiharmonically) in the transverse 

direction (along the z coordinate).  Maximum relative oscillations were observed in the region ~ = y/6 -- 0.3...0.4. 

When approaching the outer  boundary ,  the isotachs become more straight. This is evidence of the fact that 

maximum perturbing velocities lie in the region ~ = 0.3 ... 0.4. In the region of the existence of vortices, the ampli tude 

of velocity oscillations is virtually constant downstream. Therefore ,  we can conclude that the intensi ty of the vortex 

flow remains constant along the flow. As has been shown by measurements ,  the vortices are ra ther  stable, a l though 

their  positions oscillate somewhat about their  axes. The  period of vibrations is about 5 sec, and their  ampli tude is 

4...5 mm, irrespective of the flow parameters.  Velocity maxima on isotachs (Fig. l) correspond to descending flows 

in the vortex. Thus ,  in this cross-section (z = const) the velocity profile is more filled. In the cross-sections in which 

isotachs have minima, ascending flows exist. Here the profile is filled to the maximum extent.  Figure 2 shows 

velocity profiles in the boundary layer  at z = var. Here we also present a calculated profile obtained numerical ly 

based on the Seb i sh i -Bradshaw model with allowance for the effect of surface curvature on turbulent  viscosity [91 

v t = vt0 (1 + fl  Ri)  2 , (1) 

where v t and vto are the turbulent  viscosities of curvilinear and linear flows, respectively; Ri = 2-~/(Rw(O-~/Oy)) is 

the Richardson number;  

t6"~ 10.143 
fl = 6.6274 - 7.843 - 103 . 
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Fig. 3. Stability diagram: 1) calculation based on linear approximation; 2) 

calculation based on nonlinear approximation (3), 3) boundary of emergence 

of unstable vortices, 4) line of emergence of stable vortices, 5) line of 

emergence of vortices [3], 6) Shivaprasad-Ramapr ian ,  7) Toman, 8) 

Hofmann et al., 9) Meroni-Bradshaw, 10) Mail et al., 11) Jeens-Johns,  
vortices present (open diamonds), vortices absent (filled diamonds). 

Fig. 4. Profiles of perturbing velocity amplitudes: 1, 3) theory (linear (4) and 

nonlinear  (5), respectively), 2, 4) experiment (linear and nonlinear ,  
respectively). 

Then we attempted to determine the criterion for theemergence of vortices, i.e., criteria for centrifugal 

instability. Since the reproducibility of the vortices in numerous experiments was good, we decided to obtain a 
criterion for the emergence of Taylor-GiArtler vortices by gradual increasing the flow rate or, which is the same, 

the GiArtler number. This made it possible to show that, on reaching certain values of the Gi~rtler number, 

spontaneously forming and decaying instable vortex structures emerge. A similar pattern has been observed in 
experiments [10 ]. Values of the GiArtler number corresponding to this regime are shown in Fig. 3. It is evident that 

these GiJrtler numbers decrease with an increase in the curvature parameter K (in the region under investigation). 

With a further increase in Gki, stable vortices emerged at a certain instant. These numbers are also shown 

in Fig. 3. The instant of emergence of these vortices is rather distinct. Therefore, in terms of [ 14 ], Taylor -Gibrtler 

turbulent instability can be called "strong," which is generally characteristic of various types of the centrifugal 

instability [12 ], and the Taylor perturbation method is the most suitable for theoretical investigations. The essence 

of the method consists in imposing the following perturbations on the main flow: 

u =  Uup+ ~ u n (y) cos (n~z) exp (Tnx) , 
n = O  

v = Vup + ~ v n (y) cos (ncrz) exp (TnX) , (2) 
r t = O  

w = ~ w n (y) sin (naz) exp (TnX) , 
t l = O  

P = Pup + ~ Pn (Y) cos (naz) exp (Tn x) . 
n = 0  

We substitute these expressions into the equations of motion and, by equating terms of the sines and cosines with 

the same arguments, obtain an infinite system of equations. In order to determine theoretically criteria for the 
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emergence of Taylor-G~ir t le r  vortices, we must test the given system of equations for eigenvalues at }'n ffi 0. When 

all harmonics except for the first (n -- 1) are neglected, we arrive at a linear approximation [8, 131. 

Two methods were used to  investigate the obtained systems of equations. The  first [14 ] is based on rep- 

resenta t ion  of the differential  equations by their  f ini te-difference analogs and subsequent  evaluation of the 

determinant  of the resulting system of algebraic equations at fixed values of all parameters  entering the equation 

(Re *- u~,~5/v, K, and a--3 except for one. When the determinant  equals zero, we obtain eigenvalues of the system 

under  investigation in the form of the dependence G8 = GiS(~). The  minimum of this dependence is a cri terion for 

the emergence of Taylor-G~ir t le r  vortices GiScr. 

In the second case, the target method was used. Equations for perturbing amp!itudes were solved by a 

numerical t ime-dependent  method [15 ] with a single free parameter  and a zero boundary  condition. The  missing 

boundary condition was replaced by a condition on the wall or external  boundary  of the boundary  layer  (~ = 1) 

d v n / d $  =* O. The  equations were solved repeatedly with subsequent correction of the free parameter  in each step, 

until the free boundary  condition was satisfied with the desired accuracy. 

Both of the methods yield close results. The  G~icr values obta ined in the l inear approximation (only 

equations with n = 1 were taken into account) are presented in Fig. 3 (curve 1) as a function of the curvature 

parameter.  A corresponding approximate dependence is presented in [8 ]. In the same figure, curve 2 was obtained 

within a nonlinear  approximation for n = 0, 1, 2. Beginning with n -- 3, allowance for h igher-order  approximations 

does not affect the results. Curve 2 can be approximated by the following dependence: 

2451 - 51,405 K for K = 0 . . . . .  0 .03 ,  (3) 

Gocr = 21.783 K -1 - 0.2617 K -2 + 5.784" 10 -3 K -3  + 2.104- 10 -4  K -4  

for K = 0.03, ..., 0 .1 .  

We used turbulence model (1) to obtain both curves. As is evident from Fig. 3, allowance for nonl inear i ty  

no longer  affects  the resul ts  of calculat ions for K > 0.03. T h e  exper imenta l  da ta  ob ta ined  in the p resen t  

investigation lie closer to the nonlinear curve. In addition to eigenvalues of the equations under  investigation, in 

solving the equations we obtained eigenfunctions representing the perturbation amplitudes, the maximum of which 

was the amplitude of the longitudinal velocity. Calculations show that the linear component ut  is virtually self- 

similar with respect to an incremental increase in perturbations, except for the region immediately adjacent  to the 

surface, and is described by the expression 

Ul _ [0 .147G~0"5~ when ~ - * 0 ,  (4) 

Ul --  Uo ~ S~  exp ( -  b~) when ~ > 0.01 , 
I .  

where b -- 2.5 and S is a weak function of curvature [8 ]. Profile (4) is shown in Fig. 4 along with experimental  

data from the profile of the total velocity (Fig. 2) with allowance for the theoretical profile (curve 1 in Fig. 2) and 

for the nonlinear  component in = 0). It is evident that the experimental  profile has a somewhat lower maximum 

compared to the calculated profile (3), and the position of the maximum lies closer to the surface,  so that  

b -- 0.33. The  nonlinear component is also presented in Fig. 4. It is evident that it is much smaller than the l inear 

component and has a maximum near the surface. In addition, a much sharper  decay of the component  is observed 

with increasing $. 

In theoretical calculations of the nonlinear velocity component we decided to consider the amplitudes in 

formulas (2) to be functions of y and x in order  to avoid introducing such an indefinite quanti ty as an incremental  

increase in perturbations Yn- As a result, the following equation was derived for "~o = uo/uoo: 

o o m 1 _ _ +  + + - -  - -  + 

d$ 2 d~ dx  m + I dx  ) x 
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-xl 2 - m ) /  m 6 duo, - -  "~x "2 dx  d x  + ( l  - + = - - -  x 

m 

where m is the exponent in the power law of the distribution of the average velocity u / u l  = ~l/m. The Galerkin 

method was used to solve the equation obtained with the coordinate functions chosen as follows: 

Uo = exp ( -  2b~) ~ a t ~/c. (5) 
k=l  

Solution showed that the coefficient 

9 S 2 

is the highest. The other coefficients are far behind in their absolute values. Profile (5) is presented in Fig. 4. It 
is evident that the theoretical profile agrees satisfactorily with the experimental one. 

Thus, our investigations made it possible to reveal the presence of both linear and nonlinear phenomena 
in turbulent Taylor-Gi~rtler vortices. 

The work was supported by the State Foundation for Basic Research of the State Committee on Science 

and Technologies of Ukraine. 

N O T A T I O N  

v, kinematic viscosity; 6, thickness of the boundary layer; uo*, velocity on the external surface of the 

boundary layer; Rw, curvature radius of the surface; K = 6 / R  w, curvature parameter; /l, vortex wavelength; or, 

wavenumber; x, y, z, curvilinear orthogonal coordinates; ~ = y /6 ;  u, v, w, velocity components along coordinates 

x, y, and z; p, pressure; 7n, incremental increase in perturbations; x = 0.4, Carman's constant; cf -- 2rw/(,ou~), 

friction coefficient; Tw, surface friction; p, desnity; n, number of perturbing harmonic. Subscripts and superscripts: 

up, unperturbed quantities; cr, critical value; f, friction; w, wall. 
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